当前位置: 网站首页>> 数学

费明稳

发布人:喻娜
发布日期:2016-09-08
浏览次数:2856

一、个人简介

费明稳,博士,副教授,硕士生导师,美国《数学评论》(Mathematical Reviews)评论员。 2010年南京大学博士毕业(导师尹会成教授) 2013年中国科学院数学与系统科学研究院博士后出站(导师张平研究员)。曾访问新加坡国立大学、北京大学、美国佛罗里达州立大学和美国佐治亚理工大学。研究方向为偏微分方程,目前研究兴趣是流体力学和液晶模型中边界层问题及相变问题。

E-mail: ahnufmwen@126.com

二、主持项目

1. 安徽师范大学青年人才培育项目(自然科学)N. 2010rcpy0360,已结题

2. 安徽省高等教育振兴计划优秀青年人才基金重点项目(自然科学)N. 2013SQRL011ZD,正在主持

3. 国家自然科学基金青年科学基金项目,N. 11301005, 正在主持

4. 安徽省自然科学基金面上项目,N. 1608085MA13, 正在主持

三、学术论文

12. Zero-viscosity limit of the Navier-Stokes equations with the initial vorticity located away from boundary, submitted. (with Tao Tao and Zhang Zhifei)

 

11. Global sharp interface limit of the Hele-Shaw-Cahn-Hilliard system, Mathematical Methods in the Applied Sciences, 2016, in press

 

10. Initial-boundary layer associated with the nonlinear Darcy-Brinkman-Oberbeck-Boussinesq system, Physica D: Nonlinear Phenomena, 2016online. (with Han Daozhi and Wang Xiaoming)

 

9. Dynamics of the nematic-isotropic sharp interface for the liquid crystal, SIAM.J. Appl. Math.,75(2015),1700-1724. (with Wang Wei, Zhang Pingwen and Zhang Zhifei)

 

8. Nodal solution of 2-D critical nonlinear Schr?dinger equations with potentials vanishing at infinity, Disc. Contin. Dyn. Syst. Ser. A, 35(2015), 2921-2948. (with Yin Huicheng)

 

7. Sign-Changing Multi-Peak Solutions for Nonlinear Schr?dinger Equations with Compactly Supported Potential.  Acta Appl. Math. 127 (2013), 137–154.

 

6. Bound states of 2-D nonlinear Schr?dinger equations with potentials tending to zero at infinity.  SIAM J. Math. Anal. 45 (2013), no. 4, 2299–2331. (with Yin Huicheng)

 

5. Bound states of asymptotically linear Schr?dinger equations with compactly supported potentials. Pacific J. Math. 261 (2013), no. 2, 335–367. (with Yin Huicheng)

 

4. On the existence of the weak solution with local energy inequality to the 3-D inhomogeneous incompressible Navier-Stokes equations. Nonlinear  Anal. 85 (2013), 248–252.

 

3. The integrability of dispersive Hunter-Saxton equation. J. Partial Differ. Equ. 25 (2012), no. 4, 330–334.

 

2. Existence and concentration of bound states of a class of nonlinear Schr?dinger equations in R2with potential tending to zero at infinity. Acta Math. Sin. (Engl. Ser.) 28 (2012), no. 11, 2243–2274. (with Cui Dacheng and Zhang Jihui)

 

1. Existence and concentration of bound states of nonlinear Schr?dinger equations with compactly supported and competing potentials. Pacific J. Math. 244 (2010), no. 2, 261–296. (with Yin Huicheng)

四、部分合作者

Han Daozhi(Indiana University, Bloomington, USA)

Tao Tao(Peking University)

Wang Wei(Zhejiang University)

Wang Xiaoming(Florida State University, USA)

Yin Huicheng(Nanjing University & Nanjing Normal University)

Zhang Pingwen(Peking University)

Zhang Zhifei(Peking University)